состоянием. Однако поскольку линия поглощения при $\psi = 0$ для бо́льшего резонансного поля на частоте 4,88 *Гец* слабо выражена, невозможно решить, принадлежит ли она однородной фазе l_{\perp} или неоднородному промежуточному состоянию. При повышении давления или температуры ситуация может существенно измениться.

Действительно, с помощью значений A₁, A₂, A₃ и (10) получим

$$\omega_{\perp} (H_{\pi}(p, T)) \approx (1 + 0.02p) \omega_{\perp} (H_{\pi}(0, T)), \qquad (23)$$

а при давлении 5,2 кбар ω_{\perp} (H_n) \approx 5,08 $\Gamma e u$, вследствие чего на всех частотах, меньших 5 $\Gamma e u$, бо́льшее резонансное поле связано с поглощением в ПС.

Сравним теперь теоретические формулы с экспериментальными резуль татами. Рассмотрим сначала случай $\psi = 0$. Выбрав в качестве бо́льшего резонансного поля $H_{2p} = H_{\pi}(p, T)$, сравним выражения (19) и (20) с экспериментом.

При этом необходимо учитывать, что множитель a перед T^2 также зависит от давления:

$$a(p) = a(0)(1 + A_1 p)^{-1}.$$
(24)

На рис. 6 приведены теоретические кривые при $p = 0; 5,2; 11,2 \kappa f cap$ на частотах » = 2,85 — 4,88 Гец. При давлении p = 0 в области температур $T > 2^{\circ}$ К наблюдается заметное отклонение теоретических кривых от экспериментальных. С увеличением давления степень этого отклонения уменьшается, и при $p=11,2~\kappa fap$ практически во всем исследованном интервале 1,68° К $\ll T \leqslant 4,2°$ К наблюдается хорошее совпадение теоретических кривых $H_p(T)$ с экспериментальными. Поскольку использованные нами температурные зависимости характеристических полей получены путем расчетов в спин-волновом приближении, очевидно, справедливо заключить, что увеличение давления расширяет температурную область применимости спинволновой теории. По-видимому, этим можно объяснить и расширение области наблюдения AФMP в CuCl₂ · 2H₂O (до 4,2° K при $p = 11,2 \kappa \delta a p$). Необходимы, однако, дополнительные экспериментальные исследования зависимости температуры Нееля от давления. На рис. 7 представлены теоретические зависимости H_i и ψ_i от температуры, построенные согласно (21), (15), (16). И в этом случае при увеличении давления согласие теоретических и экспериментальных зависимостей улучшается.

Для того чтобы понять причину исчезновения с повышением температуры впадины на изогонах (см. рис. 3), учтем, что поле $H_2(T)$, согласно [¹⁶], испытывает немонотонное изменение и с повышением температуры медленнее увеличивается, чем поле $H_{\pi}(T)$ (это подтверждается также полученным нами при $T = 1,68^{\circ}$ К значением $H_2 = 6,53$ кэ). Поскольку область максимума изогоны $H \approx H_m$ приближенно повторяет более медленное изменение поля однородной фазы l_{\perp} , а соседняя область (при $\psi = 0$) вместе с $H_{\pi}(T)$ более быстро смещается в сторону больших полей, впадина, уменьшаясь по глубине, исчезает при достаточно высокой температуре, зависящей от выбранной частоты.

Таким образом, проведенное сравнение экспериментальных и теоретических данных показывает их удовлетворительное согласие, как качественное, так и количественное.

Выводы

В результате проведенного анализа теории и эксперимента в ${\rm CuCl}_2 imes 2{\rm H}_2{\rm O}$ можно сделать следующие выводы.

1. Вычисленные магнитоупругие постоянные отличаются друг от друга на порядок ($\lambda''_{z} = 44 \ \kappa \delta a p^{-1} > \lambda''_{x} = 2 \ \kappa \delta a p^{-1} > 0, 14 \ \kappa \delta a p^{-1}$).

2. Параметр *r* анизотропии в плоскости *ab* A Φ M CuCl₂ · 2H₂O существенно зависит от давления, что должно приводить к увеличению разности резонансных частот при H = 0.

3. Наиболее сильную зависимость от давления имеет обменный параметр 8. Это должно приводить к заметному увеличению температуры Нееля при повышении давления.

4. Найденные значения магнитоупругих постоянных позволили при T = const объяснить уменьшение угла ψ_i и увеличение поля H_i срыва АФМР, уменьшение разностей $H_{2p} - H_{1p}$, $H_{2p} - H_i$ с увеличением давления (при $\omega = \text{const}$). Ширина интервала $\Delta H = H' - H_{n}$ реализации промежуточного состояния в пределах точности эксперимента от давления не зависит.

5. Восстановлена кривая фазового равновесия для $\Phi\Pi l \ l_{\parallel} \rightleftharpoons l_{\perp}$, которая имеет вид $H_{\Pi}(p, T) \approx 6.5 \div 0.07T^2 \div 0.14$ (кэ) (T измеряется в градусах Кельвина, $p - в \kappa \delta a p$). Отсюда следует, что область реализации промежуточного состояния, а следовательно, и область наблюдения АФМР в ПС с увеличением давления смещаются в сторону больших магнитных полеи.

6. Проведенное экспериментальное и теоретическое изучение зависимости AФMP в CuCl₂ · 2H₂O от давления и температуры в наклонном магнитном поле показывает: а) повышение давления приводит к увеличению интервала температур, в которых наблюдается AФMP, до 4,2° K и выше и соответственно увеличивает область применимости спин-волнового приближения, используемого при вычислении температурной зависимости частот AΦMP; б) повышение давления приводит к смещению частотного интервала AΦMP в промежуточном состоянии в область более высоких частот; в) более слабая зависимость от температуры поля $H_2(T)$ по сравнению с полем $H_{\pi}(T)$ приводит при повышении температуры к исчезновению впадины на резонансных изохронах; г) с повышением температуры интервал углов ψ , внутри которого наблюдается AΦMP, при всех исследованных давлениях уменьшается.

Авторы благодарят В. Г. Барьяхтара за обсуждение работы.

Литература

- N. J. Poulis, J. Van den Handel. J. Ubbink, J. A. Poulis, C. J. Gorter. Phys. Rev., 82, 552, 1951.
- 2. J. Ubbink, N. J. Poulis, H. J. Gerritsen, C. J. Gorter. Physica, 18, 361, 1952.
- 3. J. Ubbink, J. A. Poulis, H. J. Gerritsen, C. J. Gorter. Physica, 18, 361, 1952.
- 4. H. Umebayashi, B. C. Frazer, G. Shirane, W. Daniels. Phys. Lett., 22, 407, 1966.
- 5. W. Kawai, F. Ono. Phys. Lett., 21, 279, 1966.
- 6. А. С. Пахомов. ФММ, 25, 593, 1968.
- К. П. Белов, А. М. Кадомцева, Т. С. Конькова, Т. М. Леднева, Т. Л. Овчинникова, В. А. Тимофеева. «Кристаллография», 13, 179, 1968.
- 8. К. П. Белов, А. М. Кадомцева. УФН, 103, 677, 1971.
- 9. В. А. Джидарян. ФММ, 25, 420, 1968.
- 10. А. А. Галкин, С. Н. Ковнер, П. И. Поляков. ДАН СССР, 208, 811, 1973.

11. K. C. Johnson, A. J. Sievers. Phys. Rev., B7, 1081, 1973.

Ю. Г. Проскуряков. Упрочняюще-калибрующие методы обработки. М., Машгиз, 1965.
 Ю. Н. Денисов, В. В. Калиниченко. ПТЭ, 2, 134, 1965.